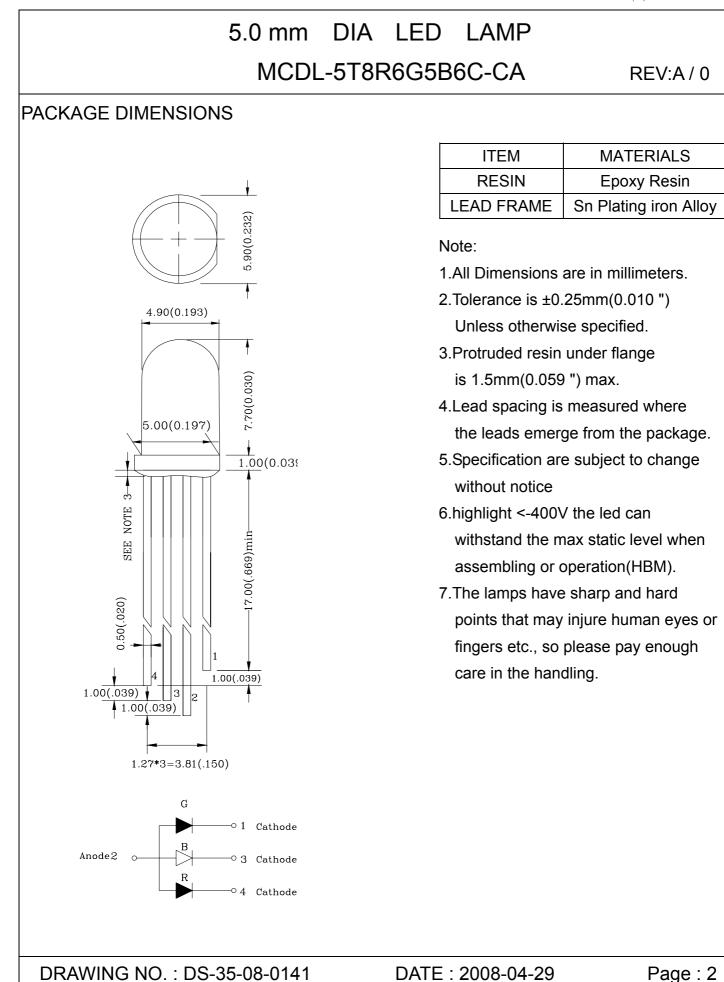
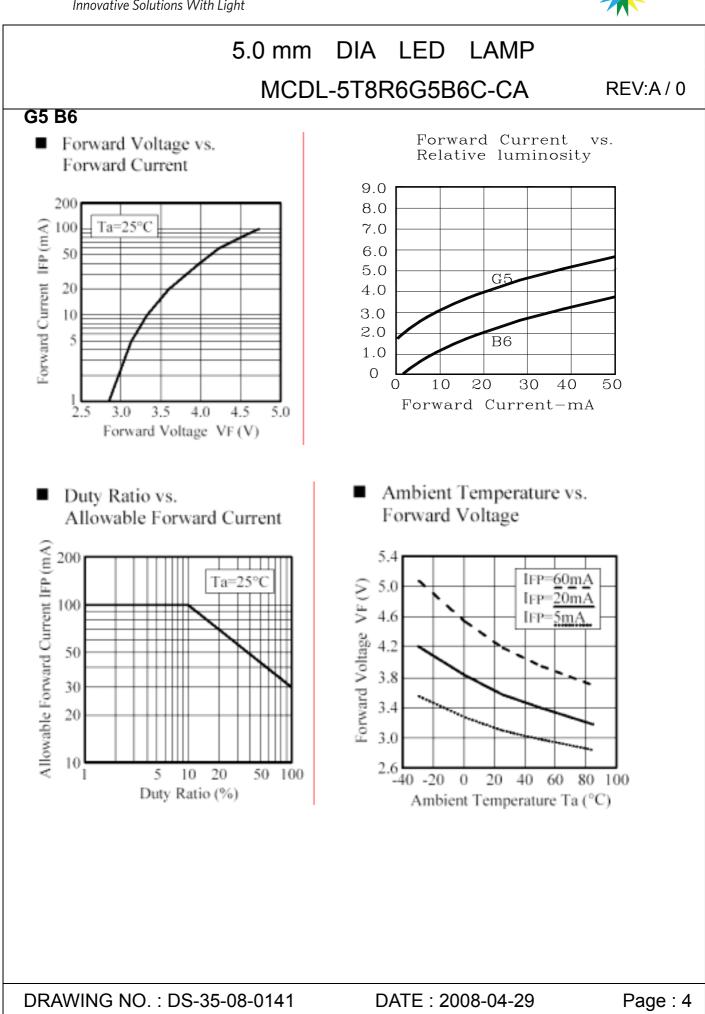
Innovative Solutions With Light

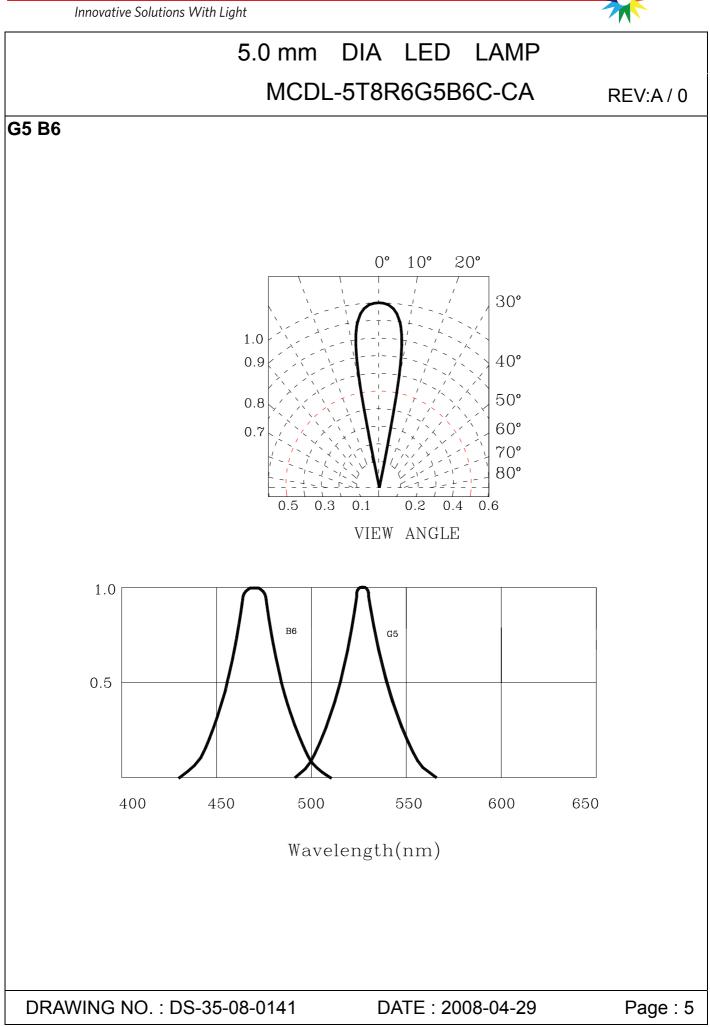

MCD Electronics Inc.

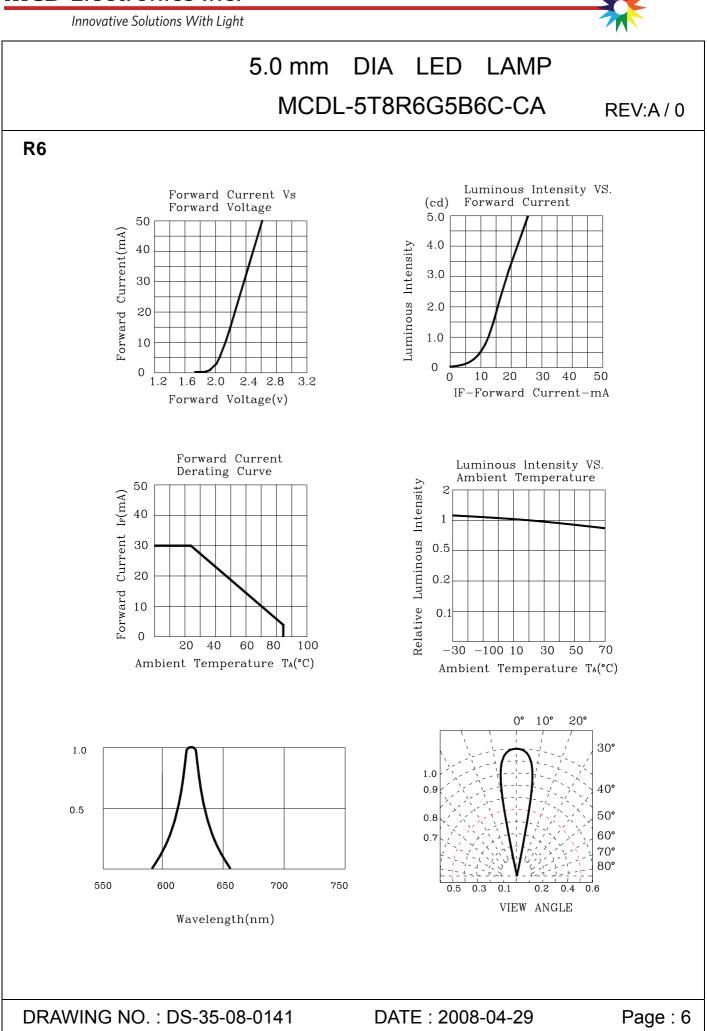
MCD Electro	nics Inc.							
8100 M4 Wyoming Blvd. NE, #268	3 Albuquerque, NM 87113							
Tel: (505) 246-8000 E-mail: sales@modelectronics.com	Fax: (505) 246-9101 m http://www.mcdelectronics.com							
DATA	SHEET							
PART NO.: MCC	L-5T8R6G5B6C-CA							
REV :	A / 0							
CUSTOMER'S APPROVAL :	DCC :							
DRAWING NO. : DS-35-08-0141	DATE : 2008-04-29 Page : 1							
sales@mcdelectronics.co	m I www.mcdelectronics.com HD-R/RD012							

Innovative Solutions With Light

Innovative Solutions With Light




	ovative Solutions with Eight								
	5.0 m	m DI	A LE	D	LA	MP			
	MC	CDL-5T	8R6G	5B6	6C-0	CA		RE	:V:A / 0
FEATUF	RES								
* SUI	TABLE HIGH PULSE C			ATIC	N				
	RA HIGH RADIANT PO					TENS	ITY		
	HRELIABILITY								
_		F							
	REE PRODUCTS								
	ATERIALS								
	Material : GaAlInP/Si	& GalnN/	GaN & C	Galn	N/G	aN			
	t Color : FULL COLOR						EN & UL	TRA BL	.UE)
-	Color : WATER CLEA								
ABSO	LUTE MAXIMUM RATI	NG : (Ta	a = 25°C)					
SYMBOL	DESCRIPTION					TRA ANGE	ULTRA PURE GREE		
PD	Power Dissipation Per Chi	р				85	120	120	mW
VR	Reverse Voltage Per Chip					5	5	5	V
lF	Average Forward Current Per Chip					30	30	30	mA
IPF	IPF Peak Forward Current (Duty=0.1,1KHZ) Per Chip				1	50	120	70	mA
- Derating Linear From 25°C Per Chip					0).4	0.4	0.4	mA/°C
Topr Operating Temperature Range						-	25°C to	o 85°C	
Tstg Storage Temperature Range					-	25°C to) 85°C		
ELECTR	RO-OPTICAL CHARAC	TERISTI	<u>CS : (Ta</u>	a = 2	5°C)			
SYMBOL	PARAMETER	TEST	CONDIT	ION		MIN.	TYP.	MAX.	UNIT
N/-			Ultra Ora				2.25	2.8	V
VF	Forward Voltage	IF=20mA	Ultra Pure Ultra Blue		en		3.5 3.5	4.0 4.0	V V
			Ultra Ora	nge			0.0	100	μA
lR	Reverse Current	VR=5V	Ultra Pure		en			100	μA
			Ultra Blue Ultra Ora				624	100	μA nm
λD	Dominant Wavelength	IF=20mA	Ultra Pure	e Gre	en		525		nm
			Ultra Blue Ultra Ora				470 20		nm
Δλ	Spectral Line Half-Width	IF=20mA			en		20		nm nm
			Ultra Blue	Э			30		nm
201/2	Half Intensity Angle	IE=20mA	Ultra Ora Ultra Pure		n		20 20		deg deg
201/2			Ultra Blue				20		deg
		IF=20mA	Ultra Ora	nge			3500		mcd
IV	Luminous Intensity				een		4000		mcd
			Ultra Blue	9			2000		mcd


DRAWING NO. : DS-35-08-0141

DATE : 2008-04-29

Innovative Solutions With Light

Innovative Solutions With Light

5.0 mm DIA LED LAMP

MCDL-5T8R6G5B6C-CA

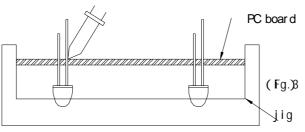
REV:A/0

•SOLDERING METHOD SOLDERING CONDITIONS REMARK Solder no closer than 3mm from the base of the package DIP Bath temperature: 260 Using soldering flux," RESIN FLUX" SOLDERING Immersion time: with 5 sec, 1 time is recommended. Attached data of temperatuare cure for your reference • During soldering, take care not to press the tip of iron against the Soldering iron: 30W or smaller lead. SOLDERING Temperature at tip of iron: 300 or lower (To prevent heat from being IRON Soldering time: within 5 sec. transferred directly to the lead, hold the lead with a pair of tweezers while soldering 1) When soldering the lead of LED in a condition that the package is fixed with a panel (See Fig.1), be careful not to stress the leads with iron tip. Lead wries (Fig. 1) Pane 2) When soldering wire to the lead, work with a Fig (See Fig.2) to avoid stressing the package. Lead wries Leave a slight cl ear ance (Fig.2) Regarding solution in the tinning oven for product-tinning, compound sub-solution made of tin & copper and sliver is proposed with the temperature of Celsius 260. The proportion of the alloyed solution is tin 95.5: copper 3.5: silver 0.5 by percentage. The time of tinning is constantly 3

DRAWING NO. : DS-35-08-0141

seconds.

DATE : 2008-04-29


Page: 7

Innovative Solutions With Light

5.0 mm DIA LED LAMP

MCDL-5T8R6G5B6C-CA REV:A / 0

3) Similarly, when a jig is used to solder the LED to PC board, take care as much as possible to avoid steering the leads (See Fig.3).

- 4) Repositioning after soldering should be avoided as much as possible. If inevitable, be sure to preserve the soldering conditions with irons stated above: select a best-suited method that assures the least stress to the LED.
- Lead cutting after soldering should be performed only after the LED temperature has returned to normal temperature.

• STORAGE

- 1) The LEDs should be stored at 30 or less and 70% RH or less after being shipped from PARA and the storage life limits are 3 months .
- 2) PARA LED lead frames are comprised of a stannum plated iron alloy. The silver surface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LEDs to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that the LEDs be used as soon as possible.

Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.

• STATIC ELECTRICITY

- Static electricity or surge voltage damages the LEDs.
 It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- 2) All devices, equipment and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs.
- 3) When inspecting the final products in which LEDs were assembled, it is recommended to check whether the assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a light-on test or a VF test at a lower current (below 1mA is recommended).

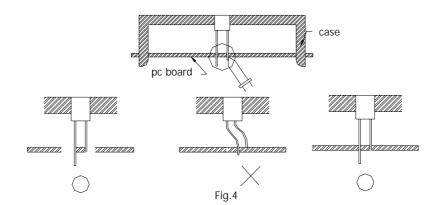
4) Damaged LEDs will show some unusual characteristics such as the leak current remarkably increases, the forward voltage becomes lower, or the LEDs do not light at the low current .

Criteria : (VF>2.0V at IF=0.5mA)

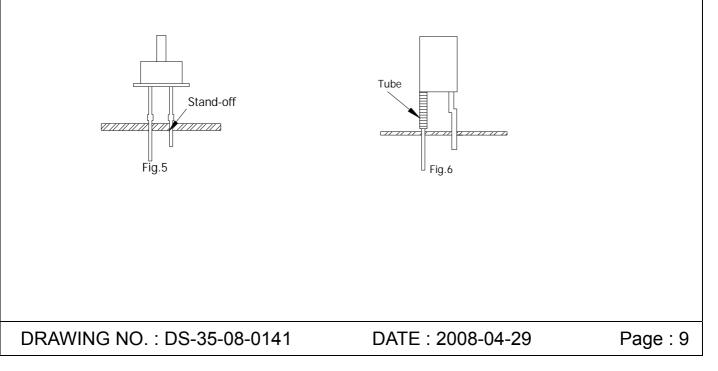
DRAWING NO. : DS-35-08-0141

DATE : 2008-04-29

Innovative Solutions With Light


5.0 mm DIA LED LAMP

MCDL-5T8R6G5B6C-CA

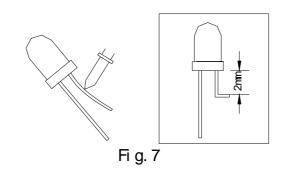

REV:A/0

•LED MOUNTING METHOD

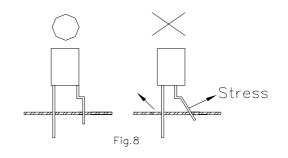
4) When mounting the LED by using a case, as shown Fig.4, ensure that the mounting holds on the PC board match the pitch of the leads correctly-tolerance of dimensions of the respective components including the LED should be taken into account especially when designing the case, PC board, etc. to prevent pitch misalignment between the leads and board holes, the diameter of the board holes should be slightly larger than the size of the lead. Alternatively, the shape of the holes should be made oval. (See Fig.4)

5) Use LEDs with stand-off (Fig.5) or the tube or spacer made of resin (Fig.6) to position the LEDs.

Innovative Solutions With Light

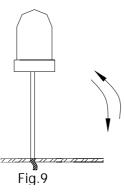


MCDL-5T8R6G5B6C-CA


REV:A/0

•FORMED LEAD

1) The lead should be bent at a point located at least 2mm away from the package. Bending should be performed with base fixed means of a jig or pliers (Fig.7)


- 2) Forming lead should be carried our prior to soldering and never during or after soldering.
- Form the lead to ensure alignment between the leads and the hole on board, so that stress against the LED is prevented. (Fig.8)

•LEAD STRENGTH

1) Bend strength

Do not bend the lead more than twice. (Fig.9)

DRAWING NO. : DS-35-08-0141 D

DATE: 2008-04-29

Innovative Solutions With Light

5.0 mm DIA LED LAMP

MCDL-5T8R6G5B6C-CA

REV:A/0

Tensile strength (@Room Temperature)
 If the force is 1kg or less, there will be no problem. (Fig.10)

• HEAT GENERATION

1) Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.

The operating current should be decided after considering the ambient maximum temperature of LEDs.

•CHEMICAL RESISTANCE

- 1) Avoid exposure to chemicals as it may attack the LED surface and cause discoloration.
- 2) When washing is required, refer to the following table for the proper chemical to be sued. (Immersion time: within 3 minutes at room temperature.)

`	
SOLVENT	ADAPTABILITY
Freon TE	
Chlorothene	
Isopropyl Alcohol	
Thinner	
Acetone	
Trichloroethylene	
UsableDo	not use.

NOTE: Influences of ultrasonic cleaning of the LED resin body differ depending on such factors as the oscillator output, size of the PC board and the way in which the LED is mounted. Therefore, ultrasonic cleaning should only be performed after confirming there is no problem by conducting a test under practical.

DRAWING NO. : DS-35-08-0141

DATE : 2008-04-29

Innovative Solutions With Light

5.0 mm DIA LED LAMP

MCDL-5T8R6G5B6C-CA

REV:A/0

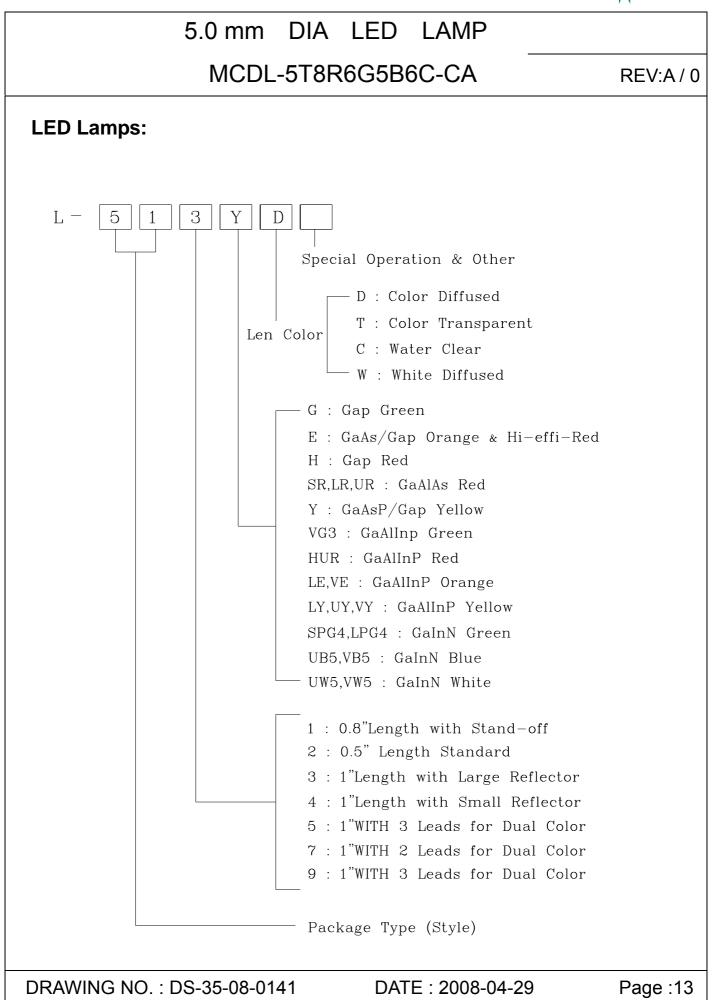
Bin Code List

Forward Voltage (VF), Unit:v@20mA							
Bin	Min	Max	Bin	Min	Max		
Code(B6)	IVIIII	IVIAX	Code(G5)	IVIIII	IVIAX		
V1	2.88	3.33	V1	2.88	3.33		
V2	3.07	3.54	V2	3.07	3.54		
V3	3.16	3.74	V3	3.16	3.74		
V4	3.46	3.95	V4	3.46	3.95		
V5	3.65	4.0	V5	3.65	4.0		

Dominant Wavelength(λD), Unit:nm@20mA							
Bin	Min	Max	Bin	Min	Max		
Code(B6)	IVIIII	IVIAX	Code(G5)	IVIIII			
D3	459	464	D3	509	516		
D4	462	467	D4	514	521		
D5	465	470	D5	519	526		
D6	468	473	D6	524	531		
D7	471	475	D7	529	536		

Luminous Intensity(IV), Unit:mcd@20mA								
Min	Mox	Bin	Min	Mox	Bin	Min	Max	
IVIIII	IVIAX	Code(G5)		iviax	Code(B6)			
1671.3	2339.8	I	1510	2110	G	770	1080	
2339.8	3275.7	J	2110	2950	Н	1080	1510	
3275.7	4586	К	2950	4130	I	1510	2110	
4586	6421.8	L	4130	5780	J	2110	2950	
6421.8	8027.3	М	5780	8090	К	2950	4130	
	2339.8 3275.7 4586	MinMax1671.32339.82339.83275.73275.7458645866421.8	Min Max Bin Code(G5) 1671.3 2339.8 I 2339.8 3275.7 J 3275.7 4586 K 4586 6421.8 L	Min Max Bin Code(G5) Min 1671.3 2339.8 I 1510 2339.8 3275.7 J 2110 3275.7 4586 K 2950 4586 6421.8 L 4130	Min Max Bin Code(G5) Min Max 1671.3 2339.8 I 1510 2110 2339.8 3275.7 J 2110 2950 3275.7 4586 K 2950 4130 4586 6421.8 L 4130 5780	Min Max Bin Code(G5) Min Max Bin Code(B6) 1671.3 2339.8 I 1510 2110 G 2339.8 3275.7 J 2110 2950 H 3275.7 4586 K 2950 4130 I 4586 6421.8 L 4130 5780 J	Min Max Bin Code(G5) Min Max Bin Code(B6) Min 1671.3 2339.8 I 1510 2110 G 770 2339.8 3275.7 J 2110 2950 H 1080 3275.7 4586 K 2950 4130 I 1510 4586 6421.8 L 4130 5780 J 2110	

Tolerance of each bin are±15%


DRAWING NO. : DS-35-08-0141

DATE : 2008-04-29

Page : 12

Innovative Solutions With Light

